If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-64x+225=0
a = 1; b = -64; c = +225;
Δ = b2-4ac
Δ = -642-4·1·225
Δ = 3196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3196}=\sqrt{4*799}=\sqrt{4}*\sqrt{799}=2\sqrt{799}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-64)-2\sqrt{799}}{2*1}=\frac{64-2\sqrt{799}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-64)+2\sqrt{799}}{2*1}=\frac{64+2\sqrt{799}}{2} $
| 4(3x+7)=-8 | | 875=50+55x | | x=1+-2^2 | | 3a-4/a=a | | 2(5x-3)+7=20 | | (7x-8)+(3x+5)=8x+9 | | N(t)=2.96t2+11.37t+59.7(0t5) | | 8x-11=71 | | 9+b=–8 | | 2y+9/3=3y+10 | | 7x+8=2x=3 | | 2y+9/3=3y+31 | | 990/p=48 | | 2x^2+3x-118=0 | | 20*b=440 | | 3.5x^2+9.8-480x=0 | | -4(x+5)=-24 | | 74t=296 | | 3(2c+)=18 | | 5m+1-4m=-12 | | -3x+124=8x-217 | | 7x+20=60−3x | | 7y/2=3y/2 | | 5x-3x-1=x-4 | | 5÷2×t^2+10×t=30 | | 10d=5d-35 | | 15x-108=6x+63 | | 0.5t^2+2t-6=0 | | 3(4x-6)=9 | | 1/9(p+18)+1/3(2p+3)=3 | | ×+2(12+x)=39 | | 24=3x2(9)-7(9) |